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a b s t r a c t

A high quality factor (Q-factor) is one of the major requirements of high-performance

resonators. An understanding of the dissipation mechanism is crucial for maximizing

the quality factor by reducing the energy loss. Thermoelastic damping has been well-

known as the important intrinsic dissipation that affects the quality factor of micro-

coupled thermoelastic problems is suggested. The coupled thermoelastic equation

usually leads to a large-size complex eigenvalue problem, which is very massive and

time-consuming to solve. Therefore, we also applied the model order reduction (MOR)

scheme to this coupled multiphysical problem in order to achieve computational

efficiency. The present approach is validated by comparing the numerical results and

analytical solutions.

& 2009 Published by Elsevier Ltd.
1. Introduction

In recent years, micromechanical resonators have been used in a wide variety of applications, such as gyroscopes,
accelerometers, and many other types of sensor. The resonator’s quality factor is a key element in the measurement of the
performance of micromechanical resonators. It is essential that the resonator vibrate consistently at the desired frequency
and that it require as little energy as possible to maintain its vibration. These features can be characterized by the quality
factor of the resonator. Generally, the definition of the quality factor is

Q ¼ 2p Etotal

DE
¼
o0

2z
; (1)

where Etotal and DE are the total energy stored and energy dissipated per cycle, respectively. o0 is the natural frequency of
the system and z is the damping ratio. A higher quality factor indicates a lower dissipation of energy relative to the
oscillation frequency. Thus, to obtain a high-performance resonator, the maximization of the quality factor is invaluable.
However, the quality factor of the resonator cannot be specified with only one factor. There are various loss mechanisms
and the quality factor (Q) of the resonator can be expressed in the following form [1]:

Q ¼
1

QTED
þ

1

Qanchor
þ

1

Qfluid
þ

1

Qsurface
þ

1

Qothers

� ��1

: (2)
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Usually, the devices operate in a vacuum and the contribution of 1/Qfluid is very small and negligible. The most
significant mechanism of dissipation in the resonator is thermoelastic damping (QTED in Eq. (2)). Thermoelastic damping is
a source of intrinsic material damping due to thermoelasticity and arises from the coupling of the strain field with the flow
of heat into the material. For instance, the opposite sides of a vibrating beam in the flexural mode experience contrary
deformations. When the beam’s upper part is compressed, its local temperature increases. The temperature of the lower
part of the beam decreases when it is under tension. This phenomenon is repeated continuously while the beam is
vibrating in the flexural mode. Thus, the temperature gradients occur locally and irreversible heat-flow is generated due to
these temperature gradients. That is, the irreversible heat-flow is the origin of the intrinsic damping.

Zener [2,3] first highlighted the importance of the thermoelastic damping of vibrating structures and suggested
analytical expressions for the quality factor of the simple beam model. The theory suggested by Zener is valid for the thin
rectangular beam model that vibrates in the flexural mode. The quality factor due to thermoelastic damping is given by

Q�1 ¼
Ea2T0

rCp

ot
1þ ðotÞ2

; t ¼ b2

p2k
; (3)

where E is Young’s modulus, a is the coefficient of thermal expansion, T0 is the reference temperature, r is the density, o is
the natural frequency and Cp is the specific heat under constant pressure. t is the relaxation time that is needed to allow the
temperature gradient of the beam to relax, b is the thickness of the beam, and k is the thermal diffusivity(k=k/rCp ,where k

is thermal conductivity).
Lifshitz and Roukes [4] also presented an analytical expression of the quality factor by using the explicitly computed

thermal distribution in a beam

Q�1 ¼
Ea2T0

rCp

6

x2
�

6

x3

sinhxþ sinx
coshxþ cosx

 !
; x ¼ b

ffiffiffiffiffiffi
o
2k

r
: (4)

The thermoelastic damping of micro-beam resonators is analyzed through the finite sine Fourier transformation
method that is combined with Laplace transformation and the normal mode analysis of Sun et al. [5]. Sun et al. considered
the size dependency of thermoelastic damping and various boundary conditions of the beam, which were not considered in
the study of Liftshitz and Roukes [4]. However, these expressions work well only for simple beams with rectangular cross-
sections and under simple harmonic vibrations in the flexural mode; they are not suitable for structures with complex
geometries. By utilizing the perturbation method, Nayfeh and Younis [6] presented an analytical expression for the quality
factor of micro-plates of general shapes and boundary conditions under thermoelastic damping. Wong et al. [7,8]
considered the application of Zener’s theory to thin circular rings and compared their theoretical predictions with
experimental results. Recently, an analytical expression for the thermoelastic damping has been also established for
axisymmetric out-of-plane vibration of circular plate [9]. Nevertheless, these analytical approaches are limited to relatively
simple geometries and boundary conditions. Therefore, a numerical approach, such as the finite-element method, is
required for practical applications.

Silver and Peterson [10] proposed a method for predicting thermoelastic damping in beams through the finite element
method (FEM). They combined the linear coupled thermoelastic dissipation theory of the beam determined by Zener and
the explicit matrix method of Segalman [11]. However, the efficiency of this method has not been verified adequately
because the evaluation of the differential stiffness matrix requires the Fourier transform in an integral form, which results
in the handling of full matrices in the computation.

A different approach using FEM was presented by Yi [12] to solve the thermoelastic-damping problem. The coupled
thermoelastic-damping problem was transformed into an eigenvalue problem by the introduction of the perturbation of
displacement and the temperature field. However, in their formulation, unnecessary degrees of freedom (dof) are
considered in the velocity, which subsequently increases the total degrees of freedom of the global system matrices. And
the computation of thermoelastic damping was also performed by using thermal-energy method in the commercial
software ANSYS/Multiphysics [13]. This method has the advantage of significant reduction of computational time because
it does not involve complex values and is utilized in commercial package.

In our present work, a finite element for the fundamental equations of thermoelasticity is formulated based on the
virtual-work principle. The thermoelastic coupled phenomenon causes the damping and is characterized by a resonance
shift [14]. Thus, it is necessary to compute the eigenvalues of the coupled thermoelastic problem to derive the quality
factors that are associated with each eigenvalue. The coupled thermoelastic problem induces a quadratic eigenvalue
problem (QEP), which is not easy to solve through an iterative eigensolver. Currently, there is no efficient numerical method
that can handle the QEP directly. Therefore, the QEP is usually transformed into a generalized eigenvalue problem (GEP)
with the same eigenvalues and solved by GEP techniques. However, the GEP requires twice of the degrees of freedom of the
original problem. Thus, a lot of computing time and resources are required to compute the complex eigenvalues of practical
large size problems, not just for a simple model, such as a beam or plate model. This is one of the crucial issues which have
been emerged in a lot of applications of QEPs such as vibration analysis of structural systems, gyroscopic systems, vibro-
acoustics and so forth. In the present study, the model order reduction (MOR) method based on Krylov subspaces is
adopted to resolve this problem and it proves that the MOR method can be successfully applied to the coupled
thermoelastic problem. We can greatly improve the computational efficiency by using the MOR method, which provides us



ARTICLE IN PRESS

J. Choi et al. / Journal of Sound and Vibration 329 (2010) 84–9586
the same accuracy of natural frequencies in the engineering requirement and quality factors in comparison with the
solutions of the original system.

2. General thermoelastic theory

The mechanical and thermal behaviors can be represented through the strain and temperature distributions at a specific
time. Thus, the state of a structure is specified by reversible heat flow and elastic deformation under the assumption of
isothermal conditions. However, the coupling of reversible elastic deformation and irreversible heat transfer due to the
heat conduction, which occurs instantaneously, must be considered when the temperature varies over time.

According to the first law of thermodynamics, the energy-conservation relationship can be expressed as follows [15]:

d

dt
ðPþ KÞ ¼ Lþ

dQ

dt
: (5)

In Eq. (5), P is the internal energy, K is the kinetic energy, L is the momentum due to the external force, and Q is the heat
energy absorbed in the body. The energy terms in Eq. (5) are given as

L ¼

Z
V

bivi dV þ

Z
A
tivi dA; K ¼

r
2

Z
V

vivi dV ; _Q ð¼ dQ=dtÞ ¼ �

Z
A
qini dAþ

Z
V

Qgen dV and P ¼
Z

V
U dV ; (6)

where bi is the body force, ti is the surface traction, vi is the velocity vector, and r is the density. Further, qi is the heat-flux
vector, ni is the surface normal vector, Qgen is the heat energy generated per unit volume and time and U is the internal
energy of the body per unit volume. The energy-equilibrium equation is obtained by applying the divergence theorem
to Eq. (6) Z

V
ðrvi _vi þ

_U ÞdV ¼

Z
V

bivi dV þ

Z
A
tivi dA�

Z
V
ðqi;i � QgenÞdV : (7)

Eq. (7) is rearranged using the relations of the Cauchy formula, ti=sijnj, where sij is the stress tensor, and the divergence
theorem,

R
Ativi dA=

R
Asijnjvi dA=

R
V(sijvi),j dV. As a result,Z

V
½ _U � ðsij;j þ bi � r _viÞvi � sijvi;j þ qi;i � Qgen�dV ¼ 0: (8)

From Eq. (8), we can get the following energy-equilibrium equation:

_U ¼ sij _eij � qi;i þ Qgen (9)

where eij is the strain tensor.
Also, the entropy-balance equation is given by

T _S ¼ �qi;i þ Qgen: (10)

Here, T and S represent the temperature and entropy, respectively, and the Helmholtz free energy, (F(eij,T)�U�TS), is
defined and the Taylor-series expansion of the Helmholtz free energy around a prescribed expansion point (eij=0,T=T0) is
performed. In this manner, we have the following equation:

Fðeij; TÞ ¼
1

2
Cijkleijekl � bijeijy�

1

2
my2
þ � � � ; (11)

where y=T�T0, Cijkl=(@2F(0,T0))/(@eij@ekl), bij=�(@2F(0,T0))/(@eij@T), and m=�(@2F(0,T0))/(@T2).
If the isotropic properties are considered, Eq. (11) can be expressed as

Fðeij; TÞ ¼ meijeij þ
1

2
lekkenn � gekky�

1

2
my2; (12)

where m, l are the Lame’s constants and the constants, g and m, are determined to be

g ¼ ð3lþ 2mÞa ¼ E

1� 2n
a and m ¼

CE

T0
: (13)

Here, a is the thermal expansion coefficient, n is Possion’s ratio and CE is the specific heat per unit volume. Therefore, the
final form of the Helmholtz free energy is summarized as

Fðeij; yÞ ¼
1

2
Cijkleijekl � gekky�

CE

2T0
y2; g ¼ Eat

ð1� 2nÞ : (14)

Then, the following constitutive equations can be derived:

sij ¼
@F

@eij
¼ Cijklekl � gy; (15)

S ¼ �
@F

@y
¼ bijeij þ

CE

T0
y ¼ gekk þ

CE

T0
y ¼

Ea
ð1� 2nÞ

ekk þ
CE

T0
y: (16)
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3. Finite element formulations

The weak form of thermoelasticity is derived based on the virtual work principle. To this end, first the displacement and
temperature fields are discretized, i.e.,

u ¼ Nuuu and y ¼ Nyuy; (17)

where u and y are the displacement and temperature fields, respectively. Nu is the shape function of the displacement field
and Ny is the shape function of the temperature field. uu and uy are the displacement and temperature-rise vectors.
Therefore, the strain–displacement relationship and the derivative of the thermal field can be represented as

e ¼ Buuu and ry ¼ Byuy: (18)

Here, e is the strain vector and Bu and By are the derivatives of the shape-function matrices of the displacement and
temperature-rise, respectively.

The weak form of matrix equations for the thermoelastic problems is derived by considering the variation
of the displacement (u) and the temperature rise (y) with respect to du and dy. First, we consider the equilibrium
equation below

r � rþ f ¼ q €u: (19)

The weak form of the equation is written as follows, by introducing an arbitrary weighting function, du:Z
V
duðr €u �r � r� fÞdV : (20)

By integrating the second term by parts and rearranging, we can express Eq. (20) as

�

Z
V
deTr dV þ

Z
V
duðf � r €uÞdV þ

Z
A
duðr � nTÞdA ¼ 0: (21)

The local entropy balance equation in Eq. (10) is multiplied by dy and integrated over the volumeZ
V
dyðT0

_S þr � qÞdV ¼ 0: (22)

Then, Eq. (22) can be summarized asZ
V
dyT0

_S dV �

Z
V

qdðryÞdV þ

Z
A
dyðq � nÞdA ¼ 0: (23)

The constitutive equations are given as

r ¼ Ce� by where b ¼
Ea

1� 2v
I; (24)

_S ¼ b _e þ
CE

T0
y (25)

and

q ¼ �kry; (26)

where Eq. (26) is known as the Fourier’s law of heat conduction and k(=kI) is the thermal conductivity matrix.
By substituting Eqs. (24)–(26) together with Eqs. (17) and (18) into Eqs. (21) and (23), we get

T0

Z
V
duT

yNT
yb

TBu _uu dV þ CE

Z
V
duT

yNT
yNy _uy dV þ

Z
V
duT

yBT
ykByuy dV þ

Z
V
duT

uBT
uCBuuu dV �

Z
V
duT

uBT
ubNyuy dV

þ r
Z

V
duT

uNT
uNu €uu dV

¼ �duT
y

Z
A
NT
yq� n dAþ duT

u

Z
A
NT

ut dAþ duT
u

Z
V

NT
uf dV (27)

duT
yðCyu _uuþCyy _uyþKyyuyÞ þ duT

yðKuuuu � Kuyuy þMuu €uuÞ ¼ �duT
yFy þ duT

uFu (28)

where Kyy=
R

VBy
TkBydV, Cyu=T0

R
VNy

TbTBu dV, Cyy=CE

R
VNy

TNydV, and Muu=
R

VrNu
TNu dV, Kuu=

R
VBu

TCBu dV, Kuy=
R

VBu
TbNy dV,

where Kuu and Kyy are the stiffness matrices due to the mechanical and thermal fields. Muu is the mass matrix and Cyy is the
damping matrix due to the thermal field. The matrices, Cyu and Kuy, are respectively, the damping matrix and stiffness
matrix due to the thermo-mechanical coupling effect.

From Eq. (28), we obtain the following set of ordinary differential equations:

Muu 0

0 0

� � €uu

€uy

( )
þ

0 0

Cyu Cyy

" #
_uu

_uy

( )
þ

Kuu �Kuy

0 Kyy

" #
uu

uy

( )
¼

0

0

� �
: (29)
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Here, it is explicitly assumed that the displacement field, (uu), and the temperature-shift field, (uy), are separable in
terms of the position and time

uu ¼ ûuf ðtÞuy ¼ ûyf ðtÞ; (30)

where f(t)=e(io�d)t=elt.
The imaginary part, o, of the complex eigenvalue, l, is the natural frequency of vibration and the real part, d, is the rate

of decay of the amplitude. Therefore, the quadratic eigenvalue problem (QEP) is achieved as

fl2 Muu 0

0 0

� �
þ l

0 0

Cyu Cyy

" #
þ

Kuu �Kuy

0 Kyy

" #
g

ûu

ûy

( )
¼

0

0

� �
: (31)

The quality factor, Q, can be computed as

Q ¼
jImðlÞj
2jReðlÞj

; (32)

where Re(l) and Im(l) represent the real and imaginary parts of the complex eigenvalues, l.
Usually, the methods for solving the quadratic eigenvalue problem, which is given in Eq. (31), can be divided into two

categories: one is to treat the problem in its original form and the other is to linearize it into a generalized eigenvalue
problem (GEP) of twice the dimension and apply techniques for solving GEPs. The finite element models generally produce
large and sparse problems and an iterative solution scheme is the best way of achieving eigensolutions in these cases.
However, no effective iterative solver is available for QEP. Of course, a direct method that utilizes the QZ algorithm can be
used to get eigensolutions of QEP. However, the computational time is extremely large for a large problem, even though the
accuracy of the solution is preserved. Therefore, in this study, the nonlinear QEP is transformed into a linear GEP with the
same eigenvalues. Once the eigenvalues of the linear GEP are obtained, the eigenvalues of the QEP can be determined.
The most common linearization scheme is the first companion linearization.

For convenience, Eq. (31) is simplified as

ðl2M þ lC þ KÞx ¼ 0 (33)

and the definition, y=lx, is introduced in Eq. (33). Thus, we can obtain the GEP

0 I

�K �C

� �
� l

I 0

0 M

� �� �
q ¼ f0g; q ¼

x

y

( )
: (34)

Thus, it is possible to extract the eigenvalues of the coupled themoelastic damping problem by using an iterative
eigensolver that is available for GEPs. Here, it is necessary to note that the matrices K̄,C̄,and M̄ are composed by some
submatrices as shown in Eq. (31), whose magnitudes are not in the same order due to physical reasons. This leads to very
poor conditions of matrices of the eigenvalue problem in Eq. (34) and, subsequently, yields inaccurate results. Therefore,
the governing equations are non-dimensionalized to get all the terms to be closer to one another in magnitude in this
study. Stable and reliable numerical results have been obtained through this procedure.

4. Reduction of the model for computational efficiency

Of late, a finite element model with large degrees of freedom is often encountered in the field of finite element analysis
(FEA) due to the complexity. Such a model requires a lot of computing resources and time. Besides, in our study, the
original, second-order dynamics system in Eq. (31) is transformed into the corresponding linear state space system, which
has double the dimensions, as shown in Eq. (34). Subsequently, the size of the state space system increases the memory
requirements. Therefore, if we can provide an efficient way of replacing the large-scale model with an approximate, smaller
model, which is still able to capture the dynamic properties of the original system, we will be able to greatly enhance the
computational efficiency. The Krylov subspace method that is based on the moment matching technique has been
recognized as one of the desirable ways of model order reduction (MOR) [16,17].

The state-space model can be simplified by appropriately defining the effective stiffness (K̂) and mass (M̂) matrices

fK̂ � lM̂g q ¼ f0g; q ¼
x

y

( )
; K̂ ¼

0 I

�K �C

� �
; M̂ ¼

I 0

0 M

� �
: (35)

The general process of model order reduction is to find an approximated state variable (z) with a small number of
degrees of freedom by obtaining the transformation matrix, T, which satisfies the following relation:

qffi Tz; where q 2 RN ;T 2 RN�n; z 2 Rn: (36)

Then, we obtain the following, reduced-order system:

fK̂r � lM̂rgz ¼ f0g; q ¼ Tz; (37)

where K̂r=TTK̂T and M̂r=TTM̂T.
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The stability and accuracy of model order reduction depend on how well the transformation matrix is obtained while
preserving the essential properties of the original system.

The reduction is achieved by applying a projection from a higher-order to a lower-order space using the Krylov
subspaces that are generated by the Arnoldi algorithm [18]. The nth Krylov subspace is defined as

KnðA;bÞ ¼ spanðb;Ab;A2b; . . . ;An�1bÞA 2 Rn�n; b 2 Rn : starting vector: (38)

Here, if we set A=K̂�1M̂ and b=K̂�1F, the nth Krylov subspace can be written as

KnðK̂
�1

M̂; K̂
�1

FÞ ¼ spanðK̂
�1

F; K̂
�1

M̂K̂
�1

F; . . . ; ðK̂
�1

M̂Þn�1K̂
�1

FÞ: (39)

It is already proved that if the Krylov subspace consists of all linear combinations of the column vectors of the
transformation matrix, T, the moments of the reduced system are coincident with those of the original system up to the nth
order [19].

Therefore, the eigenvalues can be extracted more efficiently by solving the reduced GEP in Eq. (37). The computed
eigenvalues of the reduced model agree very well with those of the original model.

5. Numerical examples

In this section, some numerical examples are considered to validate the performance and accuracy of the proposed
thermoelastic finite element approach and the efficiency of the MOR technique. Thin silicon beams with 30mm thickness
and 30mm width are taken as the test examples. The material is assumed to be isotropic. Here, we consider two kinds of
boundary condition: (i) clamped at both ends of the beam and (ii) a clamped-free condition. The thermal and mechanical
properties are given in Table 1. The computational efficiency is also demonstrated through the analysis of resonators with
more complex geometries in Section 5.3. The geometries and finite element models are depicted in Figs. 10 and 11,
respectively, and their thermomechanical properties are given in Table 6.

The eigenvalue can be obtained by solving the reduced GEP in Eq. (37). First, the desired natural frequency
corresponding to a specific vibrational mode (usually, the fundamental mode) is computed through the normal mode
analysis without considering the thermal coupling effects. Since the imaginary part of the eigenvalue of Eq. (37) stands for
the natural frequency, the natural frequency that is obtained from the normal mode analysis can be an estimate for the
complex eigenvalues of the coupled thermoelastic problem.

5.1. Clamped–clamped beam resonator

The beam model has been discretized by nine-node quadrilateral elements under the assumption of plane stress. Fig. 1
shows the initial finite element mesh configuration and also represents the deformed shape that corresponds to the
fundamental mode of vibration.

The convergence of the quality factor computed by FEM is confirmed when the number of the elements is greater than
40, as shown in Fig. 2. Since we are using higher-order quadrilateral elements, the rate of convergence is relatively faster
than when linear finite elements are used [12]. The numerically computed quality factors for the beam with various
dimensions are compared with the quality factors that are obtained from the analytical expression suggested by Zener (see
Eq. (3)) as represented in Fig. 3. A very good agreement is obtained when the beam is longer than 600mm. In this example,
it is natural to observe a slight difference between the analytical predictions and the present FEM results when the beam is
shorter than 600mm. A discrepancy is observed between the prediction of the present 2-D-plane finite elements and
Zener’s analytical solution based on the Euler beam theory. In the smaller-length range, the deformation of 2-D plane
elements is more flexible and the Euler beam model is constrained by the Euler beam assumption in which no transverse
shear deformation is allowed.

The degrees of freedom for this numerical example are increased up to 2138 due to the linearization. Therefore, the
required computations are also very time-consuming even though an iterative solver (eigs, which is provided by MATLAB)
is used. In this study, the model order reduction (MOR) method is adopted, as described in the previous section, to reduce
the computational time and memory size. The comparison between the full model and the model reduced through MOR is
Table 1
Thermal and mechanical properties of silicon [20].

Material properties

Thermal conductivity (W/(m K)) 148 (W/(m K))

Specific heat (J/kg K) 700 (J/kg K)

Coefficient of thermal expansion (1/K) 2.6e�6 (1/K)

Young’s modulus (N/m2) 150e9 (N/m2)

Poisson’s ratio 0.2

Density (kg/m3) 2330 (kg/m3)

Reference temperature (K) 298 (K)
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Fig. 1. Clamped-clamped beam model with 20 elements along the length and 4 elements across the thickness.

Fig. 2. Convergence of numerical solutions (9-node quadrilateral elements).

Fig. 3. Comparision of the quality factors from Zener’s analytical expression and finite-element results (thickness of 30 m).

Table 2
Computational time (beam length: 600mm).

FEM (full model) FEM (MOR)

DOF 2138 50

Computing time (s) 1008.5 s 8.938 s

J. Choi et al. / Journal of Sound and Vibration 329 (2010) 84–9590
summarized in Table 2. For this example, the original model is transformed into the reduced system with 50 degrees of
freedom.

However, despite the great reduction in the problem size, the accuracy of the eigensolution is not compromised at all, as
shown in Fig. 4. Very good agreement is achieved between the computed quality factors of the original finite element
model and those of the reduced model.

In this study, a 3-D thermoelastic element is also developed using 10-node tetrahedral elements. The finite element
model and the first bending mode shape are shown in Fig. 5. The test results are summarized in Table 3. A beam with 30mm
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Fig. 4. Quality factors obtained from reduction through MOR.

Fig. 5. First bending mode of a 3-D micro-beam with both ends clamped.

Table 3
Quality factor of a 30mm�30mm�1000mm beam that is clamped at both ends.

Model DOF Q-factor Natural frequency (rad/s)

Zener 11,887.449 1.55461e6

9-node quad. 2138 11,828.348 1.54886e6

10-node tetra. 4960 11,656.491 1.55333e6

Fig. 6. Clamped-free beam model with 20 elements along the length and 4 elements across the thickness.

J. Choi et al. / Journal of Sound and Vibration 329 (2010) 84–95 91
width, 30mm height, and 1000mm length is prepared for comparison with the above results from 2-D analysis. The finite
element mesh is automatically generated in a commercial mesh generator. The number of nodes and elements are 638 and
285, respectively.

As shown in Table 3, in the case of thin-beam problems, the nine-node quadrilateral element yields more accurate
results than the 10-node tetrahedral element, even though the degrees of freedom of the former are low. This is because the
nine-node quadrilateral element is more flexible than the 10-node tetrahedral element with regard to bending-
deformation behaviors.

5.2. Clamped–free beam resonator

The second example is that of a beam model with different boundary conditions: one side is clamped and
the other is free. The initial and deformed mesh configuration corresponding to the first bending mode are illustrated
in Fig. 6.

In Fig. 7, the numerical results of the quality factor are compared to the theoretical solutions and the experimental
results [21]. An agreement within a 3 percent error-bound is obtained if the aspect ratio is high enough. The model order
reduction is also applied to this example; in terms of the quality factor, the results from this approach agree very well with
the results for the original system without reduction. Thus, computational efficiency is confirmed (see Fig. 8). In Table 4,
there is also a significant reduction in the computational time when the model order reduction (MOR) technique is used,
even though the difference in the time is not so large in comparison with the previous example.
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Fig. 7. Comparison of quality factors: theory, FEM, and experimental results.

Fig. 8. Quality factors through MOR vs. results without MOR.

Table 4
Computational time (beam length: 600mm).

FEM FEM (MOR)

DOF 2176 50

Computing time (s) 94.281 s 8.234 s

Fig. 9. First bending mode of the 3-D cantilever beam.

Table 5
Quality factor of a 30mm�30mm�1000mm cantilever beam.

Model DOF Q-factor Natural frequency (rad/s)

Zener 23311.954 2.44287e5

9-node quad. 2176 23605.405 2.44295e5

10-node tetra. 5032 23888.720 2.44948e5
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The 3-D finite element model mesh configuration is exactly the same as in the previous example, except for the
boundary conditions. The finite element model and the first bending mode shape are shown in Fig. 9. In this numerical
example, the accuracy of the 3-D finite element is also a little lower than that of the 2-D plane element; however, an error
of less than 3 percent is obtained (see Table 5).
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Fig. 10. Paddle resonator: (a)SEM image [23] (b) CAD model (c) finite element model (d) fundamental mode shape, both ends of the beam are clamped.

Fig. 11. Micromechanical resonator: (a) SEM image [24], (b) CAD model, (c) finite element model and (d) fundamental mode shape.

Table 6
Thermomechanical properties.

Resonator Paddle resonator [22] Micromechanical resonator [25]

Material Silicon Aluminum

Critical dimensions (mm) 5.5�2�0.2 (mm) 100� 60�1 (mm)

Thermal conductivity (W/(m K)) 130 (W/(m K)) 237 (W/(m K))

Specific heat (J/(kg K)) 700 (J/(kg K)) 898.7 (J/(kg K))

Coefficient of thermal expansion (1/K) 2.6e�6 (1/K) 23.6e�6 (1/K)

Young’s modulus (N/m2) 180e9 (N/m2) 70e9 (N/m2)

Poisson’s ratio 0.2 0.3

Density (kg/m3) 2330 (kg/m3) 2679 (kg/m3)

Reference temperature (K) 300 (K) 300 (K)

Table 7
Natural frequency and quality factor of paddle resonator.

Simulated Frq. (MHz) Simulated Frq. [22] (MHz) Measured Frq. [23] (MHz) Simulated Q Simulated Q [22]

4.78 4.40 5.60 2.289e8 2.0e8
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5.3. Paddle resonator and micromechanical resonator with complex geometry

Two other resonators with more complex geometry are also considered to show the computational efficiency of the
suggested method using MOR scheme. Figs. 10 and 11 represent the paddle resonator and micromechanical resonator,
respectively. Their thermal and mechanical properties are given in Table 6. Both ends of each beam connected to the paddle
are clamped in case of the paddle resonator (Fig. 10). One end of each of the four beams is fixed and the other end is
connected to the membrane in case of the micromechanical resonator (Fig. 11). For both numerical examples 10-node
tetrahedral elements are used for the convenience of automatic mesh generation.

The computed fundamental natural frequency and corresponding quality factor of the paddle resonator is summarized
in Table 7. They are very close to the given data values in the Ref. [22]. As shown in Table 8, the simulated quality factor is
larger than the corresponding measured one. This is because the present study considered the thermoelastic damping
effect only and neglected all the other environmental energy-loss mechanisms. The significant disagreement between the
computed quality factor and measured one has been also reported in Refs. [13,22].

The computational time of each example are given in Table 9. For both examples, the full systems are transformed into
the reduced system with 100 degrees of freedom and the significant reduction of computational time can be obtained by
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Table 9
Computational time comparison.

Paddle resonator Micromechanical resonator

FEM FEM (MOR) FEM FEM (MOR)

DOF 9240 100 16632 100

Computational time (min) N/A 3.3 N/A 10.4

Table 8
Natural frequency and quality factor of micromechanical resonator.

Simulated Frq. (MHz) Measured Frq. [24] (MHz) Simulated Q Measured Q [24]

40.48 39.50 6.143e3 8.06e2
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utilizing MOR method. For the full systems, the eigenvalue solver (eigs) provided by MATLAB [26] did not give the
converged eigenvalue and the iteration was terminated after 30 min passed in both cases. So, the full system analysis
results in the first colum of Table 9 are not available.

6. Conclusions

In this study, a finite element method that considers the fully coupled thermoelastic problem is proposed based on the
virtual-work principle. Its performance and accuracy are verified by the solution of micro-beam resonator models for
which analytical solutions are available. The computed quality factors obtained by the numerical method are compared to
the theoretical and experimental results. The computational efficiency is enhanced by using the Krylov-based model order
reduction method (MOR) that reduces the computational time and memory usage without any significant loss of solution
accuracy. The suggested numerical approach can overcome the limitations of analytical methods and be applied to practical
problems with complex geometries and boundary conditions.
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